
 TLP WHITE

Code obfuscation

TLP WHITE

1

Abstract

Code obfuscation has a number of legitimate uses, including improved software security,

tamper prevention, and intellectual property protection. Unfortunately, it also helps malware

authors increase the survivability of their code and its ability to avoid detection. Combined

with novel delivery methods, self-altering malware has rendered reverse-engineering

exceedingly difficult and become an increasingly sophisticated challenge to intrusion detection

systems (IDS) and anti-virus (AV) software.

As obfuscation becomes more complex it becomes harder to conceal and so detection and

mitigation are not impossible. There is however a time-lag between the malware being

deployed and IDS/AV companies issuing detection signatures. Modern IDS and AV software

versions increasingly employ heuristic detection. There are therefore multiple layers of

detection that must be avoided and a good defender will cover as many of these as possible.

This paper introduces some of the key concepts in code obfuscation and highlights some of

the problems faced by IDS and AV software providers in defending against a constantly

evolving threat. Also included is a general section on detection and mitigation.

TLP WHITE

2

Contents

Introduction ... 3

Legitimate reasons for code obfuscation .. 3

Methods of code obfuscation .. 3

Obfuscation examples ... 5

Malicious code obfuscation ... 6

Encryption and encoding/decoding issues .. 6

Virtualization obfuscation ... 7

Detection and mitigation ... 7

Summary .. 8

TLP WHITE

3

Introduction

Code obfuscation is a set of program transformations that make program code and/or

program execution difficult to analyse by hindering both manual and automated inspection.1

There are a number of legitimate reasons why code is obfuscated;2 to improve the security of

the code through obscurity, to prevent tampering, or to protect intellectual property. Code

obfuscation however, also presents a number of opportunities to maximize the potential for

the survival of malware on an infected machine. On top of the various methods of

obfuscation, the manipulation of encoding and decoding provide added layers of complexity

which complicate detection. These methods have been used in combination with techniques

like code fragmentation to malware of increasing sophistication and present a considerable

challenge to IDS and AV software.

Legitimate reasons for code obfuscation

Obfuscated code contributes to heightened security by preventing code modifications or

‘application hijacking’ (the insertion of malicious code). In order to do this the code must be

reverse-engineered and so obfuscated code offers increased security by obscuring its

structure and functions.3 Software developers may also employ obfuscation techniques to

conceal flaws and vulnerabilities, or protect intellectual property. Code obfuscation also

protects against malicious modifications to a program and software piracy because an

attacker must first understand the software before they can make specified modifications.4

Methods of code obfuscation

Basic obfuscation commonly employs a simple mathematical function called ‘exclusive OR

operation’ (XOR)5. The function is easy to implement and hides data from user inspection by

using a constantly repeating key to encrypt the code. This is typically very easy to defeat

because programs exist that systematically apply every possible single-byte XOR key in search

of a particular string.6 Other manual obfuscation techniques include renaming variables and

functions, breaking down code structures (for delivery in separate data packets), or

1 C. S. Collberg and C. D. Thomborson. Watermarking, tamper-proofing, and obfuscation - tools for software protection. volume 28, 2002.
2 Techniques for Automating Obfuscation http://msdn.microsoft.com/en-us/library/hh977082(v=vs.107).aspx
3 C. S. Collberg and C. D. Thomborson. Watermarking, tamper-proofing, and obfuscation - tools for software protection. volume 28, 2002.
4 Code Obfuscation Techniques for Software Protection https://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf
5 Nowhere to Hide: Three methods of XOR obfuscation https://blog.malwarebytes.org/intelligence/2013/05/nowhere-to-hide-three-
methods-of-xor-obfuscation/
6 Obfuscation: Malware’s best friend https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/

http://msdn.microsoft.com/en-us/library/hh977082(v=vs.107).aspx
https://www.cosic.esat.kuleuven.be/publications/thesis-199.pdf
https://blog.malwarebytes.org/intelligence/2013/05/nowhere-to-hide-three-methods-of-xor-obfuscation/
https://blog.malwarebytes.org/intelligence/2013/05/nowhere-to-hide-three-methods-of-xor-obfuscation/
https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/

TLP WHITE

4

translating the code through functions such as Hex, ROT, Base64 or a Caesar cipher. Often

these translations are then incorporated into six basic obfuscation methods: 7

 Dead-code-insertion – is the insertion of No Operation Performed (NOP) code; this

code serves no function but is written in a way that complicates analysis

 Subroutine reordering - randomly changes the order of subroutines in the program,

creating different malware signatures for every variation of subroutines

 Code transposition – changes the order of instructions by using statements which

alters the code from its native form; this is achieved in two ways: by using

unconditional branch statements, or by reordering the independent instructions,

which is difficult to implement and harder to identify the malware

 Instruction substitution – replaces some of the code statements with the equivalent

statements

 Code integration – inserts a new brief into the benign source code from a program in

order to run the code malicious

 Register reassignment – replaces the unused registers with malware code registers is;

the program code and its behaviour remains the same.

Most of the obfuscation discussed so far is still robust to memory dumps as they will still be

calculated at run time and do not prevent static code analysis through normal reverse

engineering techniques. This still presents a challenge for manual analysis, but automated

processes are available to understand the concealed functionality. Often however, an entire

program is obfuscated, preventing code analysis until it is placed in memory. This type of

obfuscation is achieved with the use of a piece of software called a packer. Packers have

legitimate purposes, some of which include reducing file sizes and protecting against piracy;

they also help conceal vital program components and deter novice program crackers.8 It

compresses the original malware file and makes the original code and data unreadable, then,

they will unpack to an executable before running in memory.

Heavily obfuscated code will implement both methods so even when unpacked the code is

difficult to read, but could still be statically analysed. Once run, malware is decompressed in

memory, revealing the program’s original code. Packers ensure that the code can only be

7 Basic survey on Malware Analysis, Tools and Techniques http://airccse.org/journal/ijcsa/papers/4114ijcsa10.pdf
8 Obfuscation: Malware’s best friend https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/

http://airccse.org/journal/ijcsa/papers/4114ijcsa10.pdf
https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/

TLP WHITE

5

analysed dynamically as it is being run. Malware authors prefer to create custom packers,

decreasing the likelihood that IDS and AV software will detect it, and prevents malware from

being reverse engineered. This approach often defeats modern unpacking scripts, and forces

reversers to manually unpack the file and see what the program is doing when the malware

variant is first deployed.9 In addition to packers, a number of automatic code obfuscators are

readily available such as the BitBoost Python Code Obfuscator10 which can convert the same

variable name or function parameter name into several different names within a piece of

obfuscated code, without changing code functionality or increasing the number of code

instructions.

Obfuscation examples

Below are a few simple examples of code obfuscation to show how the technique complicates

malware detection which can be employed to conceal code.

Obfuscation Example Explanation

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Normal code for “Hello World!”

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("48656c6c6f20576f726c6421");
 }
}

Data Obfuscation with Hex
Hex encoding turns “Hello World!” into
48656c6c6f20576f726c6421.

public class HelloWorld {

 public static void main(String[] args) {
System.out.println(“48”,”65en”,”6c”,”6c(fd”,”6f”,”2054”,”57g”,”6f5h”,”72
__t”,”6c”,”64’h”,”21”
);
 }
}

Data fragmentation
Adding “” around each digit and then
packing it with other additional characters
- in decoding only the first two bytes are
read.

public class HelloWorld {

 cHVibGljIHN0YXRpYyB2b2lk main(String[] args) {
System.out.println(“48”,”65en”,”6c”,”6c(fd”,”6f”,”2054”,”57g”,”6f5h”,”72
__t”,”6c”,”64’h”,”21”
);
 }
}

Code Obfuscation with Base64
Using Base64 to encode ’public static void’
into cHVibGljIHN0YXRpYyB2b2lk hides the
variables that determine how the “Hello
World!” script is run.

9 Obfuscation: Malware’s best friend https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/
10 BitBoost Python Code Obfuscator http://www.bitboost.com/python-obfuscator/

https://blog.malwarebytes.org/intelligence/2013/03/obfuscation-malwares-best-friend/
http://www.bitboost.com/python-obfuscator/

TLP WHITE

6

Malicious code obfuscation

All of these techniques can be used separately or in combination to obfuscate code, however

for those scripting malware, code obfuscation greatly enhances two imperatives: the malware

must evade detection, and survive long enough to complete its tasks. In order to do so it must:

 Ensure entry point obfuscation – hiding the initial security breach on the host

machine or system by inserting code at an unlikely point in the infected file

 Resist manual and automated analysis – conceal suspicious signatures or behaviour

 Obfuscate the communication of instructions between the malware and the

command and control server

 Ensure information exfiltration – hide what data has been compromised and where

it was sent

Encryption and encoding/decoding issues

Fragmentation is simply deconstructing code for transmission in multiple packets and relies

on the ability of the host to receive these, potentially in the wrong order, and reconstitute

functioning code.11 As the malware is broken down and transmitted in discrete packets at the

TCP/IP layer, obfuscating the code can be used to evade IDS, and more commonly to hide

specific signature strings. This fragmentation does not evade AV however, as packets are

reassembled at the TCP/IP layer before being run on the host. It is therefore necessary to

combine the obfuscation with other methods of concealment, such as encryption, the use of

packers, or virtualization obfuscation. Although encryption is considered a distinct aspect of

coding from obfuscation, malware encryption has been used to aid obfuscation12 in addition

to the manipulation of encoders and decoders which change as the code propagates creating

malware that can be described as:

 Oligomorphic - where the decoder is changed for every instance of infection. It can still

be detected by its signature, as there is a limit to the number of replications a decoder

can make of itself.

 Polymorphic - an advancement on oligomorphic malware, this generates infinite

number of decoders by using different obfuscation techniques. The basic function of

polymorphic malware remains the same each time it is decoded, only the obfuscation

11 Intrusion detection evasion: How Attackers get past the burglar alarm http://www.sans.org/reading-
room/whitepapers/detection/intrusion-detection-evasion-attackers-burglar-alarm-1284
12 A Brief History of Malware Obfuscation http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2/

http://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-attackers-burglar-alarm-1284
http://www.sans.org/reading-room/whitepapers/detection/intrusion-detection-evasion-attackers-burglar-alarm-1284
http://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_1_of_2/

TLP WHITE

7

changes. Depending on the conditions, polymorphic code also has the ability to re-write

itself, further complicating detection.

 Metamorphic - re-written every time it is replicated, making each instance different

from its previous once. This prevents detection by removing the potential for common

signatures within a particular malware variant.

Virtualization obfuscation

During run-time, some malware authors make use of ‘virtual machines’ (VMs). It must be

noted that in this context VMs refer to a virtual processor that executes virtual instructions

(byte code) in an area of memory sectioned off from the rest of the host machine. This

method was derived from digital rights management (DRM) schemes used to deter copy-

writing of commercial media. While it is similar to runtime executable packers that

decompress a file at runtime, exposing obfuscated code before it is executed, these VMs not

only compress the target code, but also virtualize it. This renders analysis of its internal

structure, if not impossible, extremely difficult to do.13

Because a VM translates portions of the malware’s original code into a custom language

(chosen at random when the malware is compiled and then interpreted at run-time) the

malware is never restored to its original form.14 This inhibits reverse-engineering for AV

signatures and complicates real-time heuristic monitoring of the malware by IDS and AV

software, because much of the code remains obfuscated in a custom language while running

within a VM.

Detection and mitigation

Malicious code is difficult to detect when obfuscated and in the case of compromised code,

has identical observable behaviour to the original. Often the functions appear legitimate to

the user, although the program is performing entirely different functions. The calibre of

obfuscation is therefore measured in three categories: potency (how well are the functions

hidden from manual analysis), resilience (how well the obfuscation avoids automated

13 Inside the Jaws of Trojan.Clampi
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/inside_trojan_clampi.pdf
14 Unpacking Virtualization Obfuscators http://static.usenix.org/event/woot09/tech/full_papers/rolles.pdf

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/inside_trojan_clampi.pdf
http://static.usenix.org/event/woot09/tech/full_papers/rolles.pdf

TLP WHITE

8

analysis), and cost (what resource overhead is added by including the obfuscated functions).15

Although code obfuscation is a powerful tool in maximizing the survival of malware, its use

may have an upside in detection as the presence of hash functions and encryption routines

coupled with an unusual number of conditions utilizing them may indicate that suspicious

code is a malware.16 Mitigation measures focus on rule based checks that look for specific

decoding commands during automated analysis. Malware programs often incorporate

trigger-based behaviour to initiate routines based on specific conditions, and so advanced

malware analysers are able to discover code guarded by triggers without triggering the

malicious code.17 Conducted in a ‘sandbox’ (a virtual machine used for running suspicious

code in a tightly controlled environment), the malware can be triggered and analysed while

isolated from a physical machine or network.

Obfuscated code stands out from normal code and so the more malware authors employ

these techniques, the easier malware is to detect. As obfuscation becomes more complex, it

requires more hashing or unusual processes, and monitoring the use of those unusual (or

disabling them entirely) would further constrain obfuscated malware. Finally, whilst malware

can be highly customised and complex to run on its own, as soon as it has to talk to another

machine it needs to behave normally. Consequently there are multiple layers of detection

that must be avoided and a good defender will cover as many as possible. While there are still

signatures that detect the usage of some forms of obfuscation and encoding which are worth

investigating, many of the methods you highlight are designed to defeat these.

Summary

Code obfuscation has a number of legitimate reasons that improve security, prevent

tampering and protect intellectual property. It has also been used by malware authors to

increase the survival of their code, and its ability to avoid detection. This has been achieved

by employing a number of obfuscation methods in concert, complicating analysis of the code

and increasing the difficulty of generating signatures or recognizable patterns of behaviour.

Combined with novel delivery methods, self-altering malware has become an increasingly

sophisticated challenge to IDS and AV software. The use of DRM schemes for virtualization

15 A Taxonomy of Obfuscating Transformations https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
16 Impeding Malware Analysis Using Conditional Code Obfuscation http://www.iseclab.org/people/andrew/download/NDSS08.pdf
17 ibid

https://researchspace.auckland.ac.nz/bitstream/handle/2292/3491/TR148.pdf
http://www.iseclab.org/people/andrew/download/NDSS08.pdf

TLP WHITE

9

obfuscation has rendered reverse-engineering exceedingly difficult, and continues the latest

escalation in the malware arms race.

IDS and AV software has evolved in response to this and modern versions increasingly employ

heuristic detection. This behavioural monitoring increases the chance that heavily obfuscated

malware, which often require native functions such as hashing, encoding, and packers can be

identified. It allows benign programs to be identified and white-listed, as their behaviour will

change should malware compromise them. Modern AV software also often includes as

standard virtual ‘sandbox’ tools that allow users to run suspicious programs, isolated from

the operating system in order to prevent malicious code compromising the host machine or

network. The trend towards a more holistic, behaviour, based protection looks set to continue

as the proliferation of new malware variants renders signature based scanning inadequate.

TLP WHITE

10

www.cert.gov.uk

@CERT_UK

A CERT-UK PUBLICATION

COPYRIGHT 2014 ©

http://www.cert.gov.uk/

